Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 12(12)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38136684

RESUMO

Neglected tropical diseases (NTDs), a diverse group of infectious diseases, represent the leading cause of morbidity and mortality among the world's low-income populations [...].

2.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-37259338

RESUMO

The prevention of nicotinamide adenine dinucleotide (NAD) biosynthesis is considered an attractive therapeutic approach against cancer, considering that tumor cells are characterized by an increased need for NAD to fuel their reprogrammed metabolism. On the other hand, the decline of NAD is a hallmark of some pathological conditions, including neurodegeneration and metabolic diseases, and boosting NAD biosynthesis has proven to be of therapeutic relevance. Therefore, targeting the enzymes nicotinamide phosphoribosyltransferase (NAMPT) and nicotinate phosphoribosyltransferase (NAPRT), which regulate NAD biosynthesis from nicotinamide (NAM) and nicotinic acid (NA), respectively, is considered a promising strategy to modulate intracellular NAD pool. While potent NAMPT inhibitors and activators have been developed, the search for NAPRT modulators is still in its infancy. In this work, we report on the identification of a new class of NAPRT modulators bearing the 1,2-dimethylbenzimidazole scaffold properly substituted in position 5. In particular, compounds 24, 31, and 32 emerged as the first NAPRT activators reported so far, while 18 behaved as a noncompetitive inhibitor toward NA (Ki = 338 µM) and a mixed inhibitor toward phosphoribosyl pyrophosphate (PRPP) (Ki = 134 µM). From in vitro pharmacokinetic studies, compound 18 showed an overall good ADME profile. To rationalize the obtained results, docking studies were performed on the NAPRT structure. Moreover, a preliminary pharmacophore model was built to shed light on the shift from inhibitors to activators.

3.
J Nat Prod ; 86(5): 1307-1316, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37172063

RESUMO

Compounds isolated from botanical sources represent innovative and promising alternatives to conventional insecticides. Carlina oxide is a compound isolated from Carlina acaulis L. (Asteraceae) essential oil (EO) with great potential as bioinsecticide, being effective on various arthropod vectors and agricultural pests, with moderate toxicity on non-target species. Since the production from the wild source is limited, there is the need of exploring new synthetic routes for obtaining this compound and analogues with improved bioactivity and lower toxicity. Herein, the chemical synthesis of carlina oxide analogues was developed. Their insecticidal activity was assessed on the vectors Musca domestica L. and Culex quinquefasciatus Say, and their cytotoxicity was evaluated on a human keratinocyte cell line (HaCaT). The compounds' activity was compared with that of the natural counterparts EO and carlina oxide. In housefly tests, the analogues were comparably effective to purified carlina oxide. In Cx. quinquefasciatus assays, the meta-chloro analogue provided a significantly higher efficacy (LC50 of 0.71 µg mL-1) than the EO and carlina oxide (LC50 1.21 and 1.31 µg mL-1, respectively) and a better safety profile than carlina oxide on keratinocytes. Overall, this study can open the way to an agrochemical production of carlina oxide analogues employable as nature-inspired insecticides.


Assuntos
Asteraceae , Culex , Inseticidas , Óleos Voláteis , Animais , Humanos , Inseticidas/farmacologia , Larva , Mosquitos Vetores , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Asteraceae/química
4.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37111390

RESUMO

In recent years, agrochemical industries have been focused on the development of essential oil (EO)-based biopesticides, which can be considered valuable alternatives to traditional chemical products. The genus Mentha (Lamiaceae) comprises 30 species characterized by a wide range of biological activities, and some of their EOs showed good potential as pesticidal agents. In this regard, the aim of this study was to evaluate the insecticidal activity of the EO obtained from a rare linalool/linalool acetate chemotype of Mentha aquatica L. The EO was found to be highly effective against Culex quinquefasciatus (Say) 2nd instar larvae, Metopolophium dirhodum (Walker) adults, Spodoptera littoralis (Boisduval) 2nd instar larvae, and Tetranychus urticae (Koch) adults, showing lethal concentrations (LC50) or doses (LD50) of 31.5 ± 2.2 µL L-1, 4.9 ± 0.8 mL L-1, 18.5 ± 2.1 µg larvae-1, and 3.3 ± 0.5 mL L-1, respectively. On the contrary, Musca domestica L. adults and 3rd instar larvae of C. quinquefasciatus and S. littoralis were moderately affected by the treatment (LC50 or LD50: 71.4 ± 7.2 µg adult-1, 79.4 ± 5.2 µL L-1, 44.2 ± 5.8 µg larvae-1, respectively). The results obtained in this work demonstrated that various insects and pests could be differently sensible to the same EO and may lead to the exploitation of this plant or its major volatile compounds as novel ingredients of botanical insecticides and pesticides.

5.
Plants (Basel) ; 11(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36297745

RESUMO

Human pathologies, environmental pollution, and resistance phenomena caused by the intensive use of chemical pesticides have shifted the attention of the agrochemical industries towards eco-friendly insecticides and acaricides. Acmella oleracea (L.) R. K. Jansen (jambù) is a plant native to South America, widely distributed and cultivated in many countries due to its numerous pharmacological properties. This review analyzes literature about the plant, its uses, and current knowledge regarding insecticidal and acaricidal activity. Acmella oleracea has proven to be a potential pesticide candidate against several key arthropod pest and vector species. This property is inherent to its essential oil and plant extract, which contain spilanthol, the main representative of N-alkylamides. As a result, there is a scientific basis for the industrial exploitation of jambù in the preparation of green insecticides. However, studies related to its toxicity towards non-target species and those aimed at formulating and developing marketable products are lacking.

6.
Plants (Basel) ; 11(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36145754

RESUMO

Recently, spices have attracted the attention of scientists and agrochemical companies for their potential as insecticidal and acaricidal agents, and even as repellents to replace synthetic compounds that are labeled with detrimental impacts on environment and human and animal health. In this framework, the aim of this study was to evaluate the insecticidal potential of the essential oils (EOs) obtained from three Cameroonian aromatic plants, namely Monodora myristica (Gaertn.) Dunal, Xylopia aethiopica (Dunal) A. Rich., and Aframomum citratum (J. Pereira) K. Schum. They were produced by hydrodistillation, with yields of 3.84, 4.89, and 0.85%, respectively. The chemical composition was evaluated by GC-MS analysis. The EOs and their major constituents (i.e., geraniol, sabinene, α-pinene, p-cymene, α-phellandrene, and ß-pinene) were tested against the polyphagous moth pest, i.e., Spodoptera littoralis (Boisd.), the common housefly, Musca domestica L., and the filariasis and arbovirus mosquito vector, Culex quinquefasciatus Say. Our results showed that M. myristica and X. aethiopica EOs were the most effective against M. domestica adults, being effective on both males (22.1 µg adult-1) and females (LD50: 29.1 µg adult-1). The M. myristica EO and geraniol showed the highest toxicity on S. littoralis, with LD50(90) values of 29.3 (123.5) and 25.3 (83.2) µg larva-1, respectively. Last, the EOs from M. myristica and X. aethiopica, as well as the major constituents p-cymene and α-phellandrene, were the most toxic against C. quinquefasciatus larvae. The selected EOs may potentially lead to the production of cheap and effective botanical insecticides for African smallholders, although the development of effective formulations, a safety evaluation, and an in-depth study of their efficacy on different insect species are needed.

7.
Inorg Chem ; 61(34): 13561-13575, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-35969809

RESUMO

Two pyrazolone-based hydrazones H2L' [in general, H2L'; in detail, H2L1 = 5-methyl-2-phenyl-4-(2-phenyl-1-(2-(4-(trifluoromethyl)phenyl)hydrazineyl)ethyl)-2,4-dihydro-3H-pyrazol-3-one, H2L2 = (Z)-5-methyl-2-phenyl-4-(2-phenyl-1-(2-(pyridin-2-yl)hydrazineyl)ethylidene)-2,4-dihydro-3H-pyrazol-3-one] were reacted with Zn(II) and Cu(II) acceptors affording the complexes [Zn(HL1)2(MeOH)2], [Cu(HL1)2], and [M(HL2)2] (M = Cu or Zn). X-ray and DFT studies showed the free proligands to exist in the N-H,N-H tautomeric form and that in [Zn(HL1)2(MeOH)2], zinc is six-coordinated by the N,O-chelated (HL1) ligand and other two oxygen atoms of coordinated methanol molecules, while [Cu(HL1)2] adopts a square planar geometry with the two (HL1) ligands in anti-conformation. Finally, the [M(HL2)2] complexes are octahedral with the two (HL2) ligands acting as κ-O,N,N-donors in planar conformation. Both the proligands and metal complexes were tested against the parasite Trypanosoma brucei and Balb3T3 cells. The Zn(II) complexes were found to be very powerful, more than the starting proligands, while maintaining a good safety level. In detail, H2L1 and its Zn(II) complex have high selective index (55 and >100, respectively) against T. brucei compared to the mammalian Balb/3T3 reference cells. These results encouraged the researchers to investigate the mechanism of action of these compounds that have no structural relations with the already known drugs used against T. brucei. Interestingly, the analysis of NTP and dNTP pools in T. brucei treated by H2L1 and its Zn(II) complex showed that the drugs had a strong impact on the CTP pools, making it likely that CTP synthetase is the targeted enzyme.


Assuntos
Complexos de Coordenação , Pirazolonas , Trypanosoma brucei brucei , Tripanossomíase Africana , Animais , Cristalografia por Raios X , Hidrazonas , Ligantes , Mamíferos , Zinco
8.
Plants (Basel) ; 11(15)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35956490

RESUMO

Patagonia is a geographical area characterized by a wide plant biodiversity. Several native plant species are traditionally used in medicine by the local population and demonstrated to be sources of biologically active compounds. Due to the massive need for green and sustainable pesticides, this study was conducted to evaluate the insecticidal activity of essential oils (EOs) from understudied plants growing in this propitious area. Ciprés (Pilgerodendron uviferum), tepa (Laureliopsis philippiana), canelo (Drimys winteri), and paramela (Adesmia boronioides) EOs were extracted through steam distillation, and their compositions were analyzed through GC−MS analysis. EO contact toxicity against Musca domestica L., Spodoptera littoralis (Boisd.), and Culex quinquefasciatus Say was then evaluated. As a general trend, EOs performed better on housefly males over females. Ciprés EO showed the highest insecticidal efficacy. The LD50(90) values were 68.6 (183.7) and 11.3 (75.1) µg adult−1 on housefly females and males, respectively. All EOs were effective against S. littoralis larvae; LD50 values were 33.2−66.7 µg larva−1, and tepa EO was the most effective in terms of LD90 (i.e., <100 µg larva−1). Canelo, tepa, and paramela EOs were highly effective on C. quinquefasciatus larvae, with LC50 values < 100 µL L−1. Again, tepa EO achieved LD90 < 100 µL L−1. This EO was characterized by safrole (43.1%), linalool (27.9%), and methyl eugenol (6.9%) as major constituents. Overall, Patagonian native plant EOs can represent a valid resource for local stakeholders, to develop effective insecticides for pest and vector management, pending a proper focus on their formulation and nontarget effects.

9.
Antibiotics (Basel) ; 10(11)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34827351

RESUMO

This study aimed to investigate the susceptibility of Trypanosoma brucei to the Anthriscus nemorosa essential oils (EOs), isolated compounds from these oils, and artificial mixtures of the isolated compounds in their conventional and nanoencapsulated forms. The chemical composition of the essential oils from the aerial parts and roots of Anthriscus nemorosa, obtained from a wild population growing in central Italy, were analyzed by gas chromatography/mass spectrometry (GC/MS). In both cases, the predominant class of compounds was monoterpene hydrocarbons, which were more abundant in the EOs from the roots (81.5%) than the aerial parts (74.0%). The overall results of this work have shed light on the biological properties of A. nemorosa EO from aerial parts (EC50 = 1.17 µg/mL), farnesene (EC50 = 0.84 µg/mL), and artificial mixtures (Mix 3-5, EC50 in the range of 1.27 to 1.58 µg/mL) as relevant sources of antiprotozoal substances. Furthermore, the pool measurements of ADP (adenosine diphosphate) and NTPs (nucleoside triphosphates) in the cultivated bloodstream form of trypanosomes exposed to different concentrations of EOs showed a disturbed energy metabolism, as indicated by increased pools of ADP in comparison to ATP (adenosine triphosphate) and other NTPs. Ultimately, this study highlights the significant efficacy of A. nemorosa EO to develop long-lasting and effective antiprotozoal formulations, including nanoemulsions.

10.
Med Chem Res ; 30(2): 353-370, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33519168

RESUMO

The ocular drug discovery arena has undergone a significant improvement in the last few years culminating in the FDA approvals of 8 new drugs. However, despite a large number of drugs, generics, and combination products available, it remains an urgent need to find breakthrough strategies and therapies for tackling ocular diseases. Targeting the adenosinergic system may represent an innovative strategy for discovering new ocular therapeutics. This review focused on the recent advance in the field and described the numerous nucleoside and non-nucleoside modulators of the four adenosine receptors (ARs) used as potential tools or clinical drug candidates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...